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THE COOLING OF A SALT SOLUTION 

V. M. Entov and A. M. Maksimov UDC 532.78:536.42 

Self-similar formulation is used to demonstrate the possibility of a regime 
involving formation of a zone with two-phase state. The boundary is found 
between crystallization regimes with abrupt phase transition front and with 
extended mixture zone. 

We will consider a generalization of the classical Stefan problem (see, for example, [i, 
2]) of one-dimensional passage of a planar crystallization front through a cooled liquid. 
We will assume that in the liquid (water) there is dissolved a small quantity of material 
(salt) which does not enter the solid phase upon crystallization. Since the dissolved 
material decreases the phase transition temperature and is retained in the liquid phase upon 
crystallization, it is necessary to solve a mixed thermodiffusion problem, similar to that 
of crystallization of a binary alloy [2, 3]. As is well known, analysis of the self-similar 
solution [3] has shown that it becomes physically absurd at some parameter range, since in 
the melt zone ahead of the phase transition front the temperature of the melt proves to be 
lower than the local crystallization temperature. This occurs because for a sufficiently 
small diffusion coefficient the concentration ahead of the front decreases very rapidly and 
the corresponding phase transition temperature increases with removal from the front more ra- 
pidly than the local temperature. This effect has been termed "diffusion" supercooling [3]. 
To construct a solution free of this shortcoming the concept and model of a two-phase zone 
was introduced, which on the average describes crystallization with formation of dendrites 
in the case of supercooling [4, 5]. This model, well known in metallurgy, has apparently 
not been applied to freezing processes in salt solutions, in particular, to freezing of 
soil moisture. Meanwhile, formation of a two-phase zone here can lead to significant quanti- 
tative and even qualitative effects. The goal of the present study is the formulation of a 
corresponding mathematical model and determination of the boundaries of problem parameters 
separating qualitatively different freezing regimes. 

The fact that the classical "Stefan" regime may not be realizable is illustrated by Fig. 
i, which gives an example of calculation of the self-similar solution of the problem of freez- 
ing of an aqueous solution of NaCI assuming the presence of a phase transition front. It is 
clear that supercooling of the solution ahead of the freezing front occurs. We will now 
assume that between the impurity-free ice and the liquid solution there exists an inter- 
mediate zone with a two-phase state, in which ice and the solution coexist in a state of 
local thermodynamic equilibrium, so that their temperatures are equal to each other and the 
phase transition temperature for the local value of the salt concentration in the solution. 
Such behavior has been observed in experiment [6], although it has been calculated only with 
neglect of salt diffusion. 
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Fig. i Fig: 2 
Fig. I. Dimensionless temperature T, salt concentration c, and local 
phase transition temperature Tf vs dimensionless self-similar variable 
in frontal solution: k = -0.0149 K-Z; c o = 0.003; T O = 276.15 K; T o = 
271.15~ 

Fig. 2. Dimensionless temperature T, salt concentration c, salt mass M, 
and moisture v vs dimensionless self-similar variable $ in solution 
with two-phase zone; see Fig. 1 for parameter values. 

In one-dimensional formulation, corresponding to passage of a planar freezing front, this 
system corresponds to the problem 

p~C~- OT 9~ OZT -- , c = o (O<~ x<~ X,(t)); (1)  
Ot ~ Ox ~ 

o o ( o §  o, 

O(,c, D O _ ( O c )  
= , T = [ (c) (X1 (t) ~ x ~ X2 (/)); ( 2 )  

at ax - ~ x '  

OT ' 02T Oc = D c?2c 
ozC~-~-~ Xz Ox2 ' Ot Ox ~" (X~(t)<~ x < o o ) ;  (3) 

dXl , D ( ac ~ , 
T_ = T+ = r ,  = f(c,),  c, T \-Y;x ;+ 

OT d X  1 
k s ( - ~ x ) _ - - k ~ ( v * ) ( - ~ x ) + = P ~ % q - - - ~ t - - ( x = X l ( t ) ) ;  (4) 

"v= 1, c + = c - = c * ,  T + = T - - - T * = f ( c * ) ,  

o-;x ] = \ ox ,# t Ox ) -~x (x = x~ (t)); (5) 

y (x, o) = To, e (x, O) = Co, To > f (Co), T (0, t) = TO < f (col (6) 

Equations (i)-(3) express thermal and salt concentration balance for the three zones, 
Eqs. (4) and (5) are integral analogs of the equations of conservation of heat and impurity, 
written for the boundaries of the zones with consideration of the fact that on the boundary 
between the mixture and solution zones the fraction of liquid phase v tends to i. In fur- 
ther calculations it will be assumed that the heat capacity and transfer coefficients in the 
two-phase zone obey the mixture rule: 

pmCm=vptC z + ( 1 - v ) p ~ C ~ ,  ~ m = v ~ t + ( l - - v ) % ~ ,  O ~ = ~ O .  (7 )  

If the initial and boundary conditions To, T O , and c o are constants, then the problem for- 
mulated has a self-similar solution of conventional form: 

T = T(~),  c = c(~),  X~ = ~ V F ,  ~ = xt -~ /~ .  (~) 
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Fig. 3. Boundary between crys- 
tallization regimes in plane 
(~0, r for fixed value of D/ 
Ks = 0.02 and various values of 
~: i) ~ = 0.0025; 2) 0.0046; 3) 
0.4169; 4) 0.0292 (~* = 0.0292; 
classical regime with abrupt 
phase transition front corres- 
ponds to region below curves). 

Its determination reduces to solution of the boundary problem for a system of ordinary dif- 
ferential equations which can be written in explicit form for regions of a one-phase state: 

T ~- T O § (T. -- T e) err (~/2 ]/~)/erf (?/2-[/~) (0 ~ ~ ~ y); 

2 V ~  2-V~ , p ~ < o o ;  (9) 

c co + ,c* -- co, e,rc i ' /er'c( ) 
2 -VD 2 VD ' 

T* = f (c*). 

The constants y, 8, c*, T, must be determined from the condition of consistency of the 
solutions through the mixture zone, in which after substitution of Eqs. (8), (2), (4), and 
(5) we have 

~mT"+ T'~'(kz--~s) + T 'pmC~/2  + ~ 'T(pzCz--p~Cs)~/2+ p~qv'~/2 = O, 

Dye" + D v ' c ' +  vc'~/2 + cv'~/2 = O. (10) 

We will assume the quantity k = (f,)-1 constant. Then c = k(T - T w) and Eq. (i0) becomes 
a system for determination of the quantities T and v with the supplementary conditions: 

T : T , ,  c : c ,  : k ( T ,  - -  T~), c,?/2 : - -  Dc$, 

Z,T L - -  ~m (v,)  T $  = p ,v ,qv/2  (~ = V), 

T :  T*, c = = c * : k ( T * - - - T ~ ) ,  ~ * =  1, ( 1 1 )  

T i  = T%, c i : c ~  ( ~ :  ~). 

The nonlinear boundary problem of Eqs. (i0), (ii) can be solved numerically. To do 
this we first specify an arbitrary value of 6, then solve the Cauchy problem for system (i0) 
and select a value of X(8), which satisfies the boundary condition 

c,~/2 = -- Dc+ (~ = ~) ( 1 2 )  

on the  boundary between the  s o l i d  phase and the  mix tu re .  The thermal  ba lance  c o n d i t i o n  

~sTL -- X,. (v,) T+ = psi,q?~2 (~ = V), (13) 

is not then, generally speaking, satisfied. Therefore iterations are performed for the ini- 
tial ~ value until both Eqs. (12) and (13) are satisfied to the specified accuracies. Cal- 
culation results are shown in Fig. 2. Qualitatively they reflect the expected features of 
the solution. It is interesting that under the influence of a concentration gradient direc- 
ted toward the surface (x = 0) an oppositely directed flow of salt develops, with its mass 
per unit volume of the medium increasing with removal from ice -mixture boundary in the 
direction of increasing temperature, reaching a maximum near the mixture-solution bound- 
ary, and then decreasing to its initial unperturbed value. 

From the applications viewpoint the question of the conditions under which transition 
from the "discontinuous" (classical Stefan) crystallizationregime to the mixture zone re- 
gime considered above occurs is of importance. Limiting ourselves to the case of linear 
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dependence of the phase transition temperature Tf on impurity concentration c, we can easily 
show by dimensional analysis that the problem has four independent dimensionless para- 
meters: 

~o = (To - -  T f  (Co))/O, ~o = ( T  I (co) - -  T~ (14) 

= [colkO[, Ol•  

Here the characteristic temperature O = qK~/k~ is the "temperature equivalent of the heat of 
phase transition of the pure liquid." Thus, the boundary between the regimes is a three- 
dimensional surface in the four-dimensional space of the process parameters, Eq. (14). For a 
fixed solvent-dissolved material system, the last of the four parameters is fixed. Figure 2 
shows the boundary between the regimes in the plane of the parameters (~0, #0) for various 
values of the dimensionless initial concentration ~. It is clear that low values of the 
cooling ~0 and low salt concentrations correspond to the classical regime with abrupt phase 
transition front. In the plane (~0, r such a regime corresponds to the area below the 
curves separating the regimes. Increase in the dimensionless initial salt concentration 

= Ic0/ke I naturally leads to reduction in size of the zone corresponding to the classical 
regime. However, it proves to be the case that beginning at some dimensionless concentra- 
tion value ~ = @* the converse is observed: the region of existence of the classical regime 
expands with increase in ~. Thus, for a fixed value of the parameter D/Ks there is an area 
in the plane (~0~ ~0) in which the classical crystallization regime is always realized for 
any initial concentration (of course, while the linear dependence of phase transition tem- 
perature on concentration is preserved and local precipitation of salt does not occur). 

In the mixture zone the phase distribution is significantly non-one-dimensional; forma- 
tion of such structures has been observed repeatedly in rapid crystallization of binary sys- 
tems (see, for example, [7]). However, it is significant that on the whole, such a non-one- 
dimensional pattern can be described one-dimensionally. 

NOTATION 

t, time; x, coordinate; p, density; C, specific heat; ~, thermal conductivity coefficient; 
• diffusivity; D, diffusion coefficient; q, specific heat phase transition of water; f, liq- 
uidus curve; T, temperature; c, salt concentration; v, moisture (volume fraction of liquid per unit 
volume of medium); xi,2, coordinates of zone boundaries; $, self-similar variable; y, ~, self-similar 
coordinates of zone bounda[ies; Tw, crystallization temperature of water. Dimensionless 
variables and parameters: T = (T - Tw)/6 , temperature__; Tf = (f(c) - Tw)/0, phase transition 
tem~_erature; c = -c/ke, salt concentration; ~ = E/J<s self-similar variable; y = 7/v<<s ~ = 
~/VKs self-similar coordinates of zone boundaries; M = vc/c0, mass of salt; #, ~, parameters 
introduced in Eq. (14). Subscripts: s, pure ice zone; s liquid solution zone; m, mixture 
zone (two-phase zone); -, to left of zone boundary; +, to right of zone boundary; *, value 
on zone boundary. 
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